

Serial Infrared Transceiver SIR, 115.2 kbit/s, 2.7 V to 5.5 V Operation

Description

The TFBS4710 is a low profile, full range Infrared Data Transceiver module. It supports IrDA data rates up to 115.2 kbit/s (SIR). The transceiver module consists of a photo PIN photodiode, an infrared emitter (IRED), and a low-power CMOS control IC to provide a total front-end solution in a single package.

The device has a link distance of 1 meter. The RXD pulse width is independent of the duration of TXD pulse and always stays at a fixed width thus making

the device optimum for all standard SIR Encoder/ Decoder and interfaces. The Shut Down (SD) feature cuts current consumption to typically 10 nA.

Features

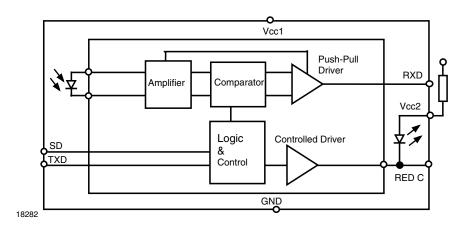
- Compliant with the latest IrDA physical layer specification (9.6 kbit/s to 115.2 kbit/s)
- Small package: H 2.74 mm x D 3.33 mm x L 8.96 mm
- Typical Link distance 1 m
- Drop in replacement for IRM5000D/ IRMT5000
- Battery & Power Management Features:
 - > Idle Current 75 µA Typical
 - > Shutdown Current 10 nA Typical
 - > Operates from 2.4 V 5.0 V within specification over full temperature range from 25 $^{\circ}$ C to + 85 $^{\circ}$ C
- Remote Control transmit distance up to 8 meters
- Tri-State Receiver Output, floating in shutdown with a weak pull-up
- Fixed RXD output pulse width (2 µs typical)
- Meets IrFM Fast Connection requirements
- Split power supply, an independant, unregulated supply for IRED Anode and a well regulated supply for V_{CC}

- Directly Interfaces with Various Super I/O and Controller Devices and Encoder/ Decoder such as TOIM4232.
- Lead (Pb)-free device.
- Device in accordance to RoHS 2002/95/EC and WEEE 202/96EC.

4 Applications

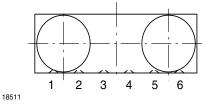
- · Ideal for Battery Operated Devices
- PDAs
- Mobile Phones
- Electronic Wallet (IrFM)
- Notebook Computers
- · Digital Still and Video Cameras
- Printers, Fax Machines, Photocopiers, Screen Projectors
- · Data Loggers
- External Infrared Adapters (Dongles)
- Diagnostics Systems
- Medical and Industrial Data Collection Devices
- · Kiosks, POS, Point and Pay Devices
- GPS
- Access Control
- Field Programming Devices

Parts Table


Part	Part Description	
TFBS4710-TR1	Oriented in carrier tape for side view surface mounting	1000 pcs
TFBS4710-TT1	Oriented in carrier tape for top view surface mounting	1000 pcs

Document Number 82612 www.vishay.com

Rev. 1.5, 23-Feb-06



Functional Block Diagram

Pinout

TFBS4710 weight 100 mg

Definitions:

In the Vishay transceiver data sheets the following nomenclature is used for defining the IrDA operating modes:

SIR: 2.4 kbit/s to 115.2 kbit/s, equivalent to the basic serial infrared standard with the physical layer version IrPhy 1.0

MIR: 576 kbit/s to 1152 kbit/s

FIR: 4 Mbit/s VFIR: 16 Mbit/s

MIR and FIR were implemented with IrPhy 1.1, followed by IrPhy 1.2, adding the SIR Low Power Standard. IrPhy 1.3 extended the Low Power Option to MIR and FIR and VFIR was added with IrPhy 1.4. A new version of the standard in any case obsoletes the former version.

With introducing the updated versions the old versions are obsolete. Therefore the only valid IrDA standard is the actual version IrPhy 1.4 (in Oct. 2002).

Pin Description

Pin Number	Function	Description	I/O	Active
1	IRED Anode	IRED Anode is connected to a power supply. The LED current can be decreased by adding a resistor in series between the power supply and IRED Anode. A separate unregulated power supply can be used at this pin.		
2	TXD	This Input is used to turn on IRED transmitter when SD is low. An on-chip protection circuit disables the LED driver if the TXD pin is asserted for longer than 80 µs	I	HIGH
3	RXD	Received Data Output, normally stays high but goes low for a fixed duration during received pulses. It is capable of driving a standard CMOS or TTL load.	0	LOW
4	SD	Shutdown. Setting this pin active for more than 1.5 ms switches the device into shutdown mode	I	HIGH
5	V _{CC}	Regulated Supply Voltage		
6	GND	Ground		

www.vishay.com

Document Number 82612

Rev. 1.5, 23-Feb-06

Absolute Maximum Ratings

Reference Point Ground, Pin 6 unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supply voltage range, all states		V _{CC}	- 0.3		+ 6.0	V
Input current	For all Pins except IRED Anode Pin	I _{CC}			10.0	mA
Output Sink Current, RXD					25.0	mA
Average output current, pin 1	20 % duty cycle	I _{IRED} (DC)			60	mA
Repetitive pulsed output current	< 90 μs, t _{on} < 20 %	I _{IRED} (RP)			300	mA
IRED anode voltage, pin 1		V _{IREDA}	- 0.5		+ 6.0	V
Voltage at all inputs and outputs	V _{in} > V _{CC} is allowed	V _{IN}	- 0.5		+ 6.0	V
Power dissipation	See derating curve				200	mW
Junction temperature					125	°C
Ambient temperature range (operating)		T _{amb}	- 30		+ 85	°C
Storage temperature range		T _{stg}	- 40		+ 100	°C
Soldering temperature	See Recommended Solder Profile				260	°C

Electrical Characteristics

Transceiver

 $\rm T_{amb}$ = 25 °C, $\rm V_{CC}$ = $\rm V_{IREDA}$ = 2.4 V to 5.5 V unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Supply voltage range, all states		V _{CC}	2.4		5.5	V
Idle supply current at V _{CC1} (receive mode, no signal)	SD = Low, $E_e = 1 \text{ k/x}^*$, $T_{amb} = -25 \text{ °C to} + 85 \text{ °C}$, $V_{CC1} = V_{CC2} = 2.7 \text{ V to } 5.5 \text{ V}$	l _{CC1}		90	130	μΑ
	SD = Low, $E_e = 1 \text{ k/x}^*$, $T_{amb} = 25 \text{ °C}$, $V_{CC1} = V_{CC2} = 2.7 \text{ V to } 5.5 \text{ V}$	l _{CC1}		75		μΑ
Receive current	$V_{CC} = 2.7 \text{ V}$	I _{CC}		280		μΑ
Shutdown current	$SD = High, T = 25 ^{\circ}C, E_e = 0 klx$	I_{SD}			2	μΑ
	SD = High, T = 85 °C	I_{SD}			3	μΑ
Operating temperature range		T _A	- 25		+ 85	°C
Output voltage low, RXD	I _{OL} = 1 mA	V _{OL}	- 0.5		0.15 x V _{CC}	V
Output voltage high, RXD	I _{OH} = - 500 μA	V _{OH}	0.8 x V _{CC}		V _{CC} + 0.5	V
	I _{OH} = - 250 μA	V _{OH}	0.9 x V _{CC}		V _{CC} + 0.5	V
RXD to V _{CC} impedance		R _{RXD}	400	500	600	kΩ
Input voltage low: TXD, SD		V _{IL}	- 0.5		0.5	V
Input voltage high: TXD, SD	CMOS level (0.5 x V _{CC} typ, threshold level)	V _{IH}	V _{CC} - 0.5		6.0	V
Input leakage current (TXD, SD)	$V_{in} = 0.9 \times V_{CC}$	I _{ICH}	- 2		+ 2	μΑ
Controlled pull down current	SD, TXD = "0" or "1", 0 < V _{in} < 0.15 V _{CC}	I _{IRTx}			+ 150	μΑ
	SD, TXD = "0" or "1" V _{in} > 0.7 V _{CC}	I _{IRTx}	- 1	0	1	μΑ
Input capacitance		C _{IN}			5	pF

TFBS4710

Vishay Semiconductors

Optoelectronic Characteristics

Receiver

 T_{amb} = 25 °C, V_{CC} = 2.4 V to 5.5 V unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
Minimum detection threshold irradiance, SIR mode	9.6 kbit/s to 115.2 kbit/s $\lambda = 850 \text{ nm} - 900 \text{ nm},$ $\alpha = 0^{\circ}, 15^{\circ}$	E _e	10 (1.0)	25 (2.5)	40 (4)	mW/m ² (μW/cm ²)
Maximum detection threshold irradiance	λ = 850 nm - 900 nm	E _e		5 (500)		kW/m ² (mW/cm ²)
Maximum no detection threshold irradiance		E _e			4 (0.4)	mW/m ² (μW/cm ²)
Rise time of output signal	10 % to 90 %, C _L = 15 pF	t _{r(RXD)}	10		100	ns
Fall time of output signal	90 % to 10 %, C _L = 15 pF	t _{f(RXD)}	10		100	ns
RXD pulse width	Input pulse width > 1.2 μs	t _{PW}	1.65	2.0	3.0	μs
Leading edge jitter	Input Irradiance = 100 mW/m ² , ≤ 115.2 kbit/s				250	ns
Standby /Shutdown delay	After shutdown active				150	μs
Receiver startup time	Power-on delay					_
Latency		t∟			150	μs

Transmitter

 T_{amb} = 25 °C, V_{CC} = 2.4 V to 5.5 V unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Тур.	Max	Unit
IRED operating current		I _D	250	300	350	mA
IRED forward voltage	I _r = 300 mA	V _f	1.4	1.8	1.9	V
IRED leakage current	TXD = 0 V, 0 < V _{CC} < 5.5 V	I _{IRED}	- 1		1	μΑ
Output radiant intensity	α = 0°, 15°, TXD = High, SD = Low	I _e	40	70	350	mW/sr
	V_{CC} = 5.0 V, α = 0°, 15°, TXD = High or SD = High (Receiver is inactive as long as SD = High)	l _e			0.04	mW/sr
Output radiant intensity, angle of half intensity		α		± 24		0
Peak-emission wavelength		λ _p	880		900	nm
Spectral bandwidth		Δλ		45		nm
Optical rise time		t _{ropt}	10		100	ns
Optical fall time		t _{fopt}	10		100	ns
Optical output pulse duration	Input pulse width 1.63 μs, 115.2 kbit/s	t _{opt}	1.46	1.63	1.8	μs
	Input pulse width t _{TXD} < 20 μs	t _{opt}	t _{TXD}		t + 0.15	μs
	Input pulse width $t_{TXD} \ge 20 \ \mu s$	t _{opt}			50	μs
Optical overshoot					25	%

www.vishay.com

Document Number 82612

Rev. 1.5, 23-Feb-06

Recommended Solder Profile

Solder Profile for Sn/Pb soldering

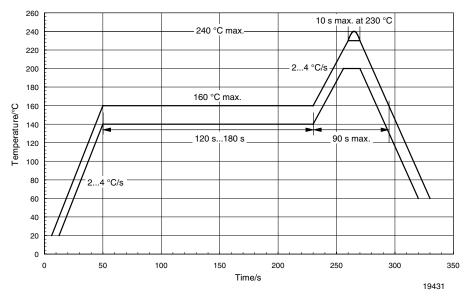


Figure 1. Recommende Solder Profile for Sn/Pb soldering.

Lead-Free, Recommended Solder Profile

The TFBS4710 is a lead-free transceiver and qualified for lead-free processing. For lead-free solder paste like Sn-(3.0 - 4.0)Ag-(0.5 - 0.9)Cu, there are two standard reflow profiles: Ramp-Soak-Spike (RSS)

and Ramp-To-Spike (RTS). Shown below in figure 2 is Vishay's recommended profile for use with the TFBS4710 transceivers. For more details please refer to Application note: <u>SMD Assembly Instruction</u>.

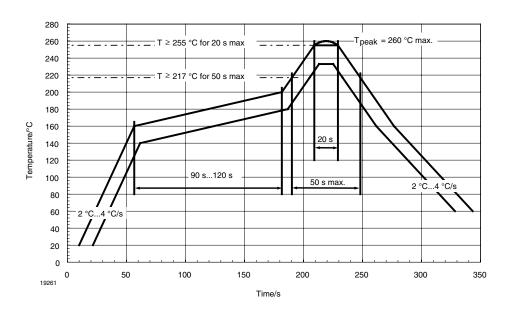


Figure 2. Solder Profile, RSS Recommendation

VISHAY.

Recommended Circuit Diagram

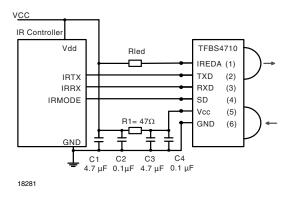


Figure 3. Recommended Application Circuit

The TFBS4710 integrates a sensitive receiver and a built-in power driver. This combination needs a careful circuit layout. The use of thin, long, resistive and inductive wiring should be avoided. The inputs (TXD, SD) and the output (RXD) should be directly (DC) coupled to the I/O circuit.

The combination of resistor R1 and capacitors C1, C2, C3 and C4 filter out any power supply noise to provide a smooth supply voltage.

The placement of these components is critical. It is strongly recommended to position C3 and C4 as close as possible to the transceiver power supply pins. A Tantalum capacitor should be used for C1 and C3 while a ceramic capacitor should be used for C2 and C4.

A current limiting resistor is not needed for normal operation. It is strongly recommended to use the Rled values mentioned in Table 1 below for high temperature operation. For Low Power Mode, IRED Anode voltage of less than 5 V is recommended.

Under extreme EMI conditions as placing a RF - transmitter antenna on top of the transceiver, it is recommended to protect all inputs by a low-pass filter, as a minimum a 12 pF capacitor, especially at the RXD port

Basic RF design rules for circuit design should be followed. Especially longer signal lines should not be used without proper termination. For reference see "The Art of Electronics" by Paul Horowitz, Winfield Hill, 1989, Cambridge University Press, ISBN: 0521370957.

Table 1.
High Operating Temperature > 70 °C

	Rled (Ω)	Rled (Ω)
V _{LED} (V)	Standard Power Mode (Intensity > 40 mW/sr, 0° - 15°)	Low Power Mode (Intensity > 3.6 mW/sr, 0° - 15°)
2.7	3	50
3.3	6	> 50
5.0	18	> 60

I/O and Software

In the description, already different I/Os are mentioned. Different combinations are tested and the function verified with the special drivers available from the I/O suppliers. In special cases refer to the I/O manual, the Vishay application notes, or contact directly Vishay Sales, Marketing or Application.

Table 2.

Recommended Application Circuit Components

Component	Recommended Value	Vishay Part Number
C1, C3	4.7 μF, 16 V	293D 475X9 016B
C2, C4	0.1 μF, Ceramic	VJ 1206 Y 104 J XXMT
R1	47 Ω, 0.125 W	CRCW-1206-47R0-F-RT1
Rled	See Table 1	

www.vishay.com

Document Number 82612

Rev. 1.5, 23-Feb-06

unexpected outputs

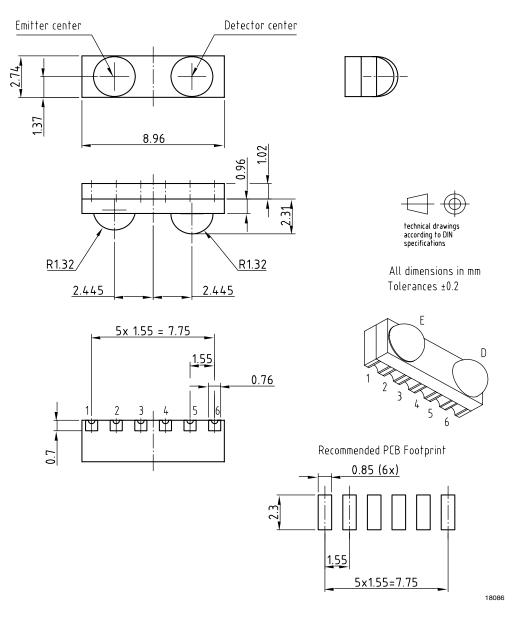
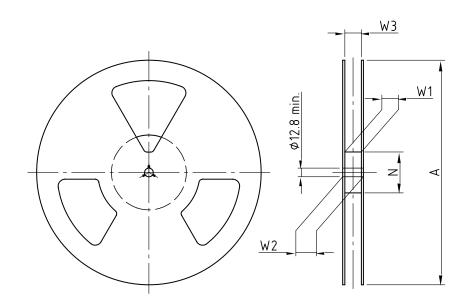


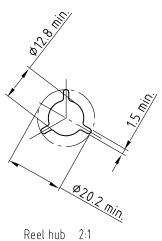
Table 3. Truth table

Inputs Outputs Remark SD TXD Optical input Irradiance RXD Transmitt Operation er mW/m^2 high Х weakly pulled 0 Shutdown (500 $\Omega)$ to V_{CC1} > 1 ms low high high inactive Transmitting Х I_e high х high inactive 0 Protection is active > µs low < 4 high inactive 0 Ignoring low signals below the IrDA defined threshold for noise immunity > Min. Detection Threshold Irradiance low (active) 0 Response to an IrDA compliant low < Max. Detection Threshold Irradiance optical input signal > Max. Detection Threshold Irradiance undefined 0 Overload conditions can cause low

Package Dimensions

Drawing-No.: 6.550-5256.01-4 Issue: 1; 24.06.03


Figure 4. Package drawing TFBS4710

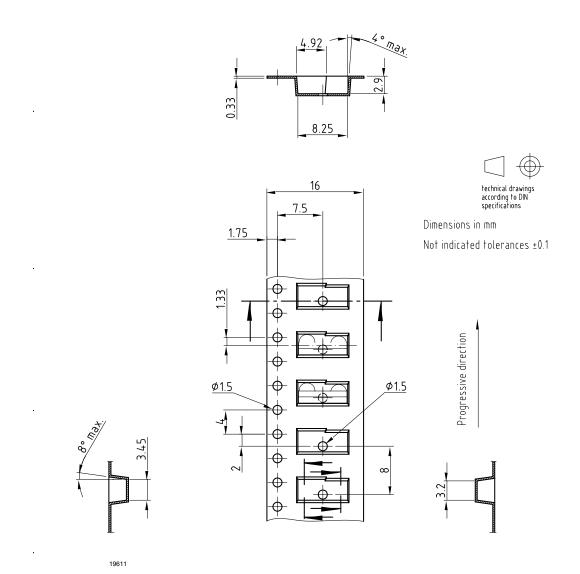

Document Number 82612 www.vishay.com Rev. 1.5, 23-Feb-06

Reel Dimensions

14017

All dimensions in mm

technical drawings according to DIN specifications


Form of the leave open of the wheel is supplier specific.

Dimension acc. to IEC EN 60 286-3

Tape Width	A max.	N	W ₁ min.	W ₂ max.	W ₃ min.	W ₃ max.
mm	mm	mm	mm	mm	mm	mm
16	330	50	16.4	22.4	15.9	19.4

VISHAY

Tape Dimensions

Drawing-No.: 9.700-5299.01-4

Issue: 1; 18.08.05

Figure 5. Tape drawing for TFBS4710 for side view mounting

www.vishay.com Document Number 82612
10 Rev. 1.5, 23-Feb-06

11

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Document Number 82612 www.vishay.com Rev. 1.5, 23-Feb-06

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05